Summary?

Andrea Comastri INAF- Osservatorio Astr. Di Bologna

"Warm" topics (a highly biased view of some scientific issues which cannot be investigated without X-rays)

- Note / Hidden Universe
- A Fundamental Physics (GR, EOS)
- Baby (high redshift) Universe
- Evolving Universe
- λ A few words about polarimetry

1c. The "hot universe" below ~10 keV

2b. Highlights from the ASCA GIS

Sites of particle acceleration

- λ Massive star forming regions
- λ Accreting compact objects
- λ Jets from compact Galactic sources
- λ Stellar flares
- λ Pulsar Wind Nebulae
- λ Gamma ray bursts
- λ High energy Cosmic Rays have to come from somewhere, and observations have called into question SNRs as the prime candidate
- λ Blazars
- λ Cluster Mergers (hard tails)
 Con X XEUS Workshop February 23-25

Observational Questions (specific to X-rays and derived from astrophysics questions)

- λ What is the photon emission mechanism?
- Nhat is the relationship between the X-ray emitting region and emission in other bands (radio, TeV)?
- λ What is the energy spectrum of the accelerated particles (including E_{max})?
- Now does this spectrum evolve with source age?
- What are the conditions in the acceleration region?

 Con X XEUS Workshop February 23-25,

Hidden (AGN) Universe

- The most sensitive surveys have effective energies of a few keV \Diamond half of the 5-10 keV XRB still unresolved
- A How common is Compton thick absorption beyond the local Universe?
- high energy cut-offs or continuum breaks?
- Physics and evolution of the SMBH at the XRB peak (30 keV)
- Ne do expect to recover the XRB synthesis predictions, but you mever when we will be a synthesis

X-ray background and resolved fraction

Residual background
Spectrum after model
Subtraction

Magenta lines: analtyic
Fit from Gruber et al

<u>Upper curve: renormalized</u> <u>Upward by 30 %</u>

Green lines
Residual spectrum from
Original Gruber fit

<u>Cyan lines</u>
<u>Residual spectrum form</u>
Renormalized Gruber fit

Strong Gravity, GR

- λ Where does GR "break"?
 - Y All expected failure points are in extreme regimes (Planck scales around a "spacetime singularity"; or on length scale of any compactified extra dimensions)
- Ne should not <u>expect</u> to find deviations from General Relativity around our black holes
 - Y Require fundamental modifications to the foundations of the theory to obtain any relevant deviation from GR
 - Y See the "Six Ways to Axiomatize Einstein's Theory" in MTWs Gravitation

... and black hole astrophysics

- Will focus on observing physics in the strong field background
 - Y Relativistic dynamics of matter & energy close to BHs
 - Y Astrophysics of BH spin
 - Y Physics of the most powerful sources in the Universe
 - Y Along the way... verify or falsify predictions of GR
 Con X XEUS Workshop February 23-25,
- We must let ourselves

 $F(2-10)=2\times10^{-12}$; M=1.2×10⁸; i=30deg Orbiting spot at 2.4 r_g , P=18ks Simulation D2005 Iovanni Miniutti

BHC - Seyfert Connections

- Both lines require $R_{in} \sim 2 R_g$, high spin (a/M > 0.8-0.9 or so).
- Centrally concentrated emission, J(r) ~ r^{-q}, q =4-5 (q=3 expected).
- Inner accretion flows must be remarkably similar.

Lockman Hole

800 ks XMM-Newton observation.

Hasinger

Streblyanskaya et al 2004

Is there a broad component?

Presence of red wings? (similar to Streblyanskaya et al. 2005 results)

Brusa, Gilli, AC 2005

Stacked spectra around redshift spikes in CDFN and CDFS (1.1 and 0.7)

Requirements needed/desired

- λ Bandpass 1-100 keV
- λ Field of view ~10 15 at all energies
- λ Angular resolution <15" above 10 keV to reach 0.1 mCrab (10-30) or 80% of the XRB
- λ Low background for SB studies
- λ Effective area: Current HXT provides 10+ keV sensitivity in 100 ks to a surface brightness of 2×10^{-13} erg arcmin⁻² cm⁻² s⁻¹
 - Y Arc minute spectroscopy of tail in cluster with 10 percent of $L_x \sim 10^{45}$ erg s⁻¹ at z=0.05 with nominal HXT area $con \times x \in US Workshop February 23-25$,
 - Y Would prefer larger effective area!

30'

The "Condensed Matter Physics" of QCD

Krishna Rajagopal (2004)

- The early universe explored the high temperature regime
- Relativistic heavy ion collision experiments are exploring transition to quark-gluon plasma
- The high density "low" temperature regime is inaccessible to laboratory experiment. The only way to study this regime is through the astrophysics of neutron stars.

EOS - Combined constraints

 $\frac{M}{R} = 0.153 \pm 0.001 \text{ M}/\text{km}$

 $M \le 2.2 (v/1000 \text{ Hz})^{-1} M_{/}$

Critical capabilities

• Band pass: $\sim 0.3 \text{ keV} - 25 \text{keV} (\sim 0.5 \text{ Å} - 30 \text{ Å})$

Lower bound to detect high-order Paschen lines.

Upper bound to constrain continuum around Fe Ly α .

Amplitude of variability increases with energy.

• Spectral resolution: ~3 eV at 1 keV

For typical rotational/pressure broadening.

• Effective area: As large as possible.

At least 10 m² for single-burst line detection

(for slow/moderate rotators).

See talk by Didier Barret.

Max. count rate: \sim 5 x 106 counts/s (see Didier Barret's talk).

Pile-up may be a problem. Defocusing?

Time resolution: t ~ 10 ms or less

Con X - XEUS - Workshop - February 23-25, 2005

The first Black Hole

Before the first star can form, the universe has to cool down to ~100K to allow molecular hydrogen cooling.

The first star is expected to be massive (~300 M), shines for ~1 Million years, sterilizes its cosmic environment, explodes in a GRB hypernova, pollutes its environment with heavy elements and leaves a seed Black Hole.

While the galaxy forms, the BH continues to grow exponentially, quickly producing a powerful quasar, if enough fuel can be provided.

Sensitive X-ray observations can detect the first GRB explosions and can detect

Q50 exponential feeding

Need ew eneration -ray elescope to detect and study BH in conjunction with forming galaxy ($S_{min} \sim 10^{-18}$ erg cm⁻² s⁻¹). $C_{con X-XEUS-Workshop-February 23-25,}$ 10⁴ M @ redshif^{20p5}10 detectable.

Prospects for Constellation-X and XEUS - 2

Simulated Constellation-X Spectra

Con-X and XEUS would allow efficient spectroscopy and variability studies for many z > 4 AGNs.

Absorption column and ionization, Fe K line properties, continuum spectral shape.

Con X - XEUS - Workshop - Febru 2005

Can we Really Find Distant Clusters?

Redshift record breaking luminous X-ray cluster found in the XMM archive by MPE-ESO-AIP collaboration \Diamond Announcement by Chris Mullis et al. on 2. 3. 2005 in Kona!

Task for ConX-XEUS

o To best characterize : abundant clusters at $z \sim 2$ M ~ 3 1013 h-1 Msun more rare clusters ... M \sim 1014 h-1 Msun

λ Scientific Requirements

```
Y Sensitivity: 10^{-18} erg cm<sup>-2</sup> s<sup>-1</sup> _ > 10 m<sup>2</sup> area @1 keV
```

Y Angular resolution 2-5 arcsec
depending also form the number counts
of faint normal galaxies
For high - z clusters

FOV

Low Background spectral resolution (a few eV)

Con X - XEUS - Workshop - February 23-25, 2005

How the universe came to be the way it is

- λ at z>1.5 the universe is very different from today
 - Y Most stars in the universe formed from 0.3<z<1.5
 - Y The epoch of black holes is $z\sim1$
 - Y Cluster evolution is doing something quite interesting at z~1
- λ Only x-ray astronomy can measure how, where and when most of the energy that

- \(\) the effects of star formation and cooling are not sufficient to produce the observed entropy profiles
- AGN heating (both internal and pre-heating) of same order to solve the galaxy formation problem 'works' to solve entropy

Fig. 2.—Central entropy $K_{0.1}$ (at $r \approx 0.1R$) vs. X-ray temperature T. Data

Fig. 3.—Integrated X-ray luminosity $L_{\rm X}$ vs. X-ray temperature T. Data: Dotted line and light shaded strip are the same as in Fig. 1. The heavy shaded strip (with 2σ width provided by the merging histories) illustrates our results for external preheating when including the AGN contribution to a total $k\Delta T=\frac{\pi}{2}$ keV per particle, as discussed in § 4. Our results for the internal impacts from quasars are illustrated by the solid (ejection model) and dashed (outflow model) lines; see § 5 for details. The coupling level of the quasar output to the ambient

Fig. 4.—Central entropy $K_{0,1}$ vs. X-ray temperature T. Data: Dotted line and light shaded strip are the same as in Fig. 2. The heavy shaded strip (with 2σ width provided by the merging historics) illustrates our results for external preheating when including the AGN contribution to a total $k\Delta T = \frac{3}{4}$ keV per particle, as discussed in § 4. Our results for the internal impacts from quasars are illustrated by the solid (ejection model) and dashed (outflow model) lines; see § 5 for details. As before the contains lead is $f = 5 \cdot 10^{-2}$

Quasar feedback can strongly affect black hole fueling and star formation in host galaxy.

Feedback likely from a wind, but details of feedback remain uncertain. Better feedback observations of X-ray absorption. modeling needed.

Perhaps can explain SMBH mass vs. bulge velocity dispersion.

Could hope to see gas being expelled via 2005

The 'missing' baryons and the WHIM

- •BBN + CMB: $\Omega_b = (4.6 \pm 0.4)\%$.
 - z>2, Damped-Ly- α pop. + Ly- α clouds
 - z<2, Ly α abs. + galaxies + clusters = (2.5±0.3)%.
 - ~ 50% of the baryons are 'missing'
- •In WHIM (filaments) at low z ?

[Dave etal. 2001]

- •IGM hotter towards low z due to shock heating
- Extra heating might be present due to SF & AGNs

Large fraction of baryons at T~10⁵-10⁷ K

Detect (started) and study properties (dMdzdN, temperature, metallicity) versus z

Probe LSS/galaxy rkshop attorny 23-25,

Mission requirements

- Y Sufficient spectral resolution to measure winds in AGN and starburst galaxies and turbulence in groups >400km/sec- 2 eV at 600 eV
- Sufficient sensitivity to measure reasonable samples of these objects
- Sufficient angular resolution to locate turbulence/mass motion in 'nearby' groups clusters 5"
- Low enough background to measure winds and surface brightness of groups

Mission requirements

 $(S/N) \sim 50 \text{ x } [(S_{eff}/10 \text{ m}^2)QE \text{ t/}(100 \text{ ks}) \text{ S/}(10^{-13} \text{ erg cm}^{-2} \text{ s}^{-1})]^{1/2}\Delta^{-1} \text{ (eV)}$ Sensitivity (EW) $\sim \Delta/10$

Cryo imaging spect

Gratings

 $\Delta \sim 1 \text{ eV}$

Shorter exposures

 $\Delta \sim 0.1 \text{ eV}$

QE~0.5-1

Weaker absorbers

 $QE \sim 0.03$

Broader sampling

More detailed sampling

The AGN unified scheme was conceived after the optical polarimetric observations of NGC 1068 (Antonucci Miller 1985)

X-ray polarimetry is an unexplored and potentially rich field

Bending model (Miniutti et al.)

The reflected disk emission is Expected to be polarized

In GR the polarization angle is a function Of illuminating source heigth

Reflection nebula in the Galactic center \Diamond echoing the past activity
Of our Galactic center \Diamond polarization angle perpendicular to the
Projected line between the BH and the nebula

- λ ASTRO E-2
- NuStar / NEXT / Simbol-X
- λ Large investement of Chandra and XMM time in the next few years

λ Help to better focus the scientific priorities